Fat Utilization During High-Intensity Exercise: When Does It End?
نویسندگان
چکیده
BACKGROUND This study examined substrate oxidation at high-intensity exercise and aimed to determine when fat oxidation ends (FATmin). We hypothesized the existence of a connection between the anaerobic threshold (AnT) and FATmin point. METHODS Breath-by-breath data obtained from indirect calorimetry during a graded treadmill test were used to measure substrate oxidation and maximal oxygen uptake (VO2max) on 47 males (30 athletes (ATL) and 17 non-athletes (NATL)). Pearson correlation coefficient (r) and effect size (R 2) were used to test correlations between VO2 at AnT and at FATmin. RESULTS Maximal oxygen uptake (VO2max) was 56.17 ± 4.95 and 46.04 ± 3.25 ml kg-1 min-1 in ATL and NATL, respectively. In ATL, AnT was observed at 87.57 ± 1.30 % of VO2max and FATmin was observed at 87.60 ± 1.60 % of VO2max. In NATL, AnT and FATmin were at 84.64 ± 1.10 % of VO2max and 85.25 ± 1.10 % of VO2max, respectively. Our data show large correlations between VO2 at AnT and VO2 at FATmin for ATL (r = 0.99, p < 0.01, 95 % CI 0.99 to 1.00) and NATL (r = 0.97, p < 0.01, 95 % CI 0.91 to 0.98). The effect size of correlations for ATL and NATL were 0.98 and 0.94, respectively. CONCLUSIONS Our results show high correlation between AnT and FATmin in both ATL and NATL with equal substrate oxidation rates at AnT.
منابع مشابه
Effect of blood flow restriction on metabolic rate and fat oxidation during and after high-intensity intermittent exercise in active male students
Background and Aims: Given the role of blood flow restriction in causing more hemodynamic stress, the aim of the present study was to investigate the effect of blood flow restriction on the metabolic rate and substrate oxidation during and after high-intensity intermittent exercise (HIIE) in male active students. Method: For this purpose, 10 male active students, selected and in a cross-over de...
متن کاملEffects of exercise intensity and altered substrate availability on cardiovascular and metabolic responses to exercise after oral carnitine supplementation in athletes.
The effects of 15 d of supplementation with L-carnitine L-tartrate (LC) on metabolic responses to graded-intensity exercise under conditions of altered substrate availability were examined. Fifteen endurance-trained male athletes undertook exercise trials after a 2-d high-carbohydrate diet (60% CHO, 25% fat) at baseline (D0), on Day 14 (D14), and after a single day of high fat intake (15% CHO, ...
متن کاملModulation of carbohydrate and fat utilization by diet, exercise and environment.
At rest and during exercise carbohydrate and fat are the predominant substrates. They are oxidized simultaneously but the relative contribution of these two substrates is dependent on a variety of factors including the exercise intensity and duration, diet, environmental conditions and training status. Changes in carbohydrate metabolism during the transition from rest to exercise and from low- ...
متن کاملDietary composition influences short-term endurance training-induced adaptations of substrate partitioning during exercise.
The purpose of the current study was to examine the influence of dietary composition on short-term endurance training-induced adaptations of substrate partitioning and time trial exercise performance. Eight untrained males cycled for 90 min at approximately 54% aerobic capacity while being infused with [6,6(2)H]glucose before and after two 10-d experimental phases separated by a 2-week washout ...
متن کامل"Fat adaptation" for athletic performance: the nail in the coffin?
ENDURANCE ATHLETES have a high capacity for the oxidation of fat during exercise as a legacy of their training. Therefore, it is intriguing that this capacity can be easily upregulated by the chronic consumption of a low-carbohydrate ( 2.5 g kg 1 day ), high-fat ( 65–70% of energy) diet. For example, 2–4 wk of exposure to such a diet in trained individuals has been shown to markedly increase fa...
متن کامل